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ABSTRACT
The Group Steiner Tree (GST) problem is a fundamental prob-
lem in database area that has been successfully applied to key-
word search in relational databases and team search in social net-
works. The state-of-the-art algorithm for the GST problem is a
parameterized dynamic programming (DP) algorithm, which find-
s the optimal tree in O(3kn + 2k(n log n + m)) time, where k
is the number of given groups, m and n are the number of the
edges and nodes of the graph respectively. The major limitations
of the parameterized DP algorithm are twofold: (i) it is intractable
even for very small values of k (e.g., k = 8) in large graphs due
to its exponential complexity, and (ii) it cannot generate a solu-
tion until the algorithm has completed its entire execution. To
overcome these limitations, we propose an efficient and progres-
sive GST algorithm in this paper, called PrunedDP. It is based on
newly-developed optimal-tree decomposition and conditional tree
merging techniques. The proposed algorithm not only drastically
reduces the search space of the parameterized DP algorithm, but
it also produces progressively-refined feasible solutions during al-
gorithm execution. To further speed up the PrunedDP algorithm,
we propose a progressive A∗-search algorithm, based on several
carefully-designed lower-bounding techniques. We conduct exten-
sive experiments to evaluate our algorithms on several large scale
real-world graphs. The results show that our best algorithm is not
only able to generate progressively-refined feasible solutions, but
it also finds the optimal solution with at least two orders of mag-
nitude acceleration over the state-of-the-art algorithm, using much
less memory.

CCS Concepts: Information systems→Graph-based database
models

Keywords: Group Steiner Tree; DP; A∗-search Algorithm

1. INTRODUCTION
The Group Steiner Tree (GST) problem is a well-known combi-

natorial optimization problem that has been extensively studied in
both research and industry communities [28, 18, 8, 22]. Given a
weighted graph G and a set of labels P , where each node in G is
associated with a set of labels. The GST problem seeks to find the
minimum-weight connected tree (i.e., the top-1 connected tree with
smallest weight) from G that covers all the given labels in P [28].
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The GST problem has a number of applications in the database
and data mining communities. For example, the keyword search
problem in relational databases has been formulated as a GST prob-
lem [8, 6]. Specifically, a relational database can be modeled as a
graph, where each node denotes a tuple and each edge represents a
foreign key reference between two tuples. Each edge is associated
with a weight, representing the strength of the relationship between
two tuples (nodes). The keyword search problem aims to find a set
of connected nodes (tuples) that covers all the given keywords with
minimum total weight of all induced edges. Clearly, the optimal
solution for such a keyword search problem is a minimum-weight
connected tree that covers the given keywords, and therefore it is
an instance of the GST problem. Most existing keyword search
systems such as BANKS-I [3], BANKS-II [19], BLINKS [17], S-
TAR [20] and DPBF [8, 6] are based on approximate or exact GST
search techniques. As indicated in [6], the GST based method (e.g.,
DPBF) is the most effective algorithm for keyword search in rela-
tional databases. Another notable application of the GST problem
is to find a team of experts from a social network [22], also called
the team formulation problem. Specifically, there is a set of experts
that form a social network, and each expert is associated with a set
of skills. Given a set of skills, the team formulation problem is to
find a team of experts with all the skills at the minimum communi-
cation cost. In [22], the team is modeled as a connected tree cov-
ering all the given skills, and the goal is to find such a connected
tree with minimum weight, where the weight measures the com-
munication cost. Obviously, such a team formulation problem is an
instance of the GST problem. Recently, the GST based method has
been recognized as a standard technique to find a team of experts
in social networks [30]. Many existing team search systems such
as [22], [2] and [25] are based on the GST search technique.

Given its large number of applications, devising an efficient algo-
rithm to solve the GST problem is crucial. Unfortunately, the GST
problem is known to be NP-hard, and it even cannot admit a poly-
nomial approximate algorithm with constant approximation ratio
[18]. Thus, there is no hope to find the optimal GST (or constan-
t approximate GST) from a graph within polynomial time unless
P=NP.

Previous studies have adopted two main types of approach to
solving the GST problem. First, many approximation solution-
s [5, 13, 3, 19, 17] have been proposed to solve the GST prob-
lem. In the theoretical computer science community, several LP
(linear programming) based approximation algorithms [5, 13] have
been developed, where the approximation ratio of these algorithms
is polylogarithmic. Since these algorithms need to invoke the LP
procedure, they are very hard to handle medium-sized graphs. In
the database community, many practical approximation algorithm-
s such as BANKS-I [3], BANKS-II [19], and BLINKS [17] have
been devised for the keyword search application. The approxi-
mation ratio of these algorithms is O(k), where k is the number
of given labels. However, as shown in [6], all these approxima-
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tion algorithms are still inefficient for large graphs due to the high
time and space complexity. Second, faster parameterized dynam-
ic programming (DP) algorithm has been devised [8] which takes
O(3kn+2k(n log n+m)) time and O(2kn) space, where m and
n are the number of the edges and nodes of the graph respectively.
Unlike the approximate algorithms, the parameterized DP algorith-
m is able to find the optimal solution in reasonable time when k
is very small. As indicated in [6], the parameterized DP algorithm
significantly outperforms the above mentioned approximation al-
gorithms for the keyword search application. The major limitations
of the parameterized DP algorithm are twofold. First, due to the
exponential time and space complexity, the parameterized DP al-
gorithm quickly becomes impractical even for very small k (e.g.,
k = 8) in large graphs. Second, it cannot generate a solution until
the algorithm has completed its entire execution, thus making the
algorithm costly in practice.

Against this background, we propose an efficient and progres-
sive GST algorithm, called PrunedDP. The PrunedDP algorithm
quickly returns an initial solution, and then improves the quality of
the solution that is found so far and achieves progressively better
bounds, as the algorithm searches more of the search space, until
an optimal solution is generated. The strength of the PrunedDP
algorithm is founded on two main components. First, we propose
a new approach to constructing a feasible solution for each state of
the parameterized DP algorithm, and then keep refining those so-
lutions during algorithm execution. Second, we develop two novel
techniques, called optimal-tree decomposition and conditional tree
merging, to reduce the search space of the parameterized DP algo-
rithm. The general idea of these techniques is to obtain the optimal
tree by merging several optimal subtrees with weights smaller than
one half of the optimal solution. Moreover, we discover that there is
no need to expand a state in the DP procedure by merging two opti-
mal subtrees if their total weight is larger than two over three of the
optimal solution. Armed with these techniques, the PrunedDP al-
gorithm not only produces progressively-refined feasible solutions
during algorithm execution, but it also drastically prunes the search
space of the parameterized DP algorithm. Thus, the time and space
overhead of the algorithm is significantly reduced.

To further speed up the PrunedDP algorithm, we propose a pro-
gressive A∗-search algorithm, called PrunedDP++, based on sev-
eral carefully-designed lower-bounding techniques (more details
can be found in Section 4). The PrunedDP++ algorithm is built
on the PrunedDP algorithm. But unlike the PrunedDP algorith-
m, PrunedDP++ makes use of the A∗-search strategy to select
the most promising state to expand, and thus many unpromising
states can be pruned. We conduct extensive experiments on several
large scale real-world graphs to evaluate the proposed algorithms.
The results show that our algorithms are able to find progressively-
refined feasible solutions during algorithm execution. Moreover,
the reported feasible solutions can be quickly refined to a near-
optimal solution in less than 10 seconds in large-scale graphs (≥ 10
million nodes) even for k = 8. In addition, when k = 8, our
best algorithm finds the optimal solution in around 20 seconds in
a large-scale graph, while the state-of-the-art algorithm cannot get
the optimal solution within one hour. In general, the PrunedDP
algorithm is around one order of magnitude faster than the state-
of-the-art algorithm, and the PrunedDP++ algorithm can further
achieves at least one order of magnitude acceleration over the
PrunedDP algorithm, using much less memory.

The main contributions of this paper are summarized as follows.

• We propose an efficient and progressive GST algorithm,
called PrunedDP, based on newly-developed optimal-tree
decomposition and conditional tree merging techniques. The
striking features of the PrunedDP algorithm are twofold: (i)
the algorithm can generate progressively-refined feasible so-
lutions during algorithm execution, and (ii) it finds the opti-

Notation Meaning
G = (V,E) the graph

S the set of labels
Sv the set of labels associated with node v
P the given label sets

f∗(P ) the optimal solution for the given label sets P
(v,X) a state of the DP algorithm
T (v,X) the minimum-weight tree rooted at v covering labels X
f∗
T (v,X) the weight of T (v,X)
ṽp the virtual node corresponding to label p
VP the set of virtual nodes corresponding to labels P

R(ṽi, ṽj , X̄) the minimum-weight route that starts from ṽi, ends at ṽj ,
and passes through all virtual nodes in VX̄

W (ṽi, ṽj , X̄) the weight of the route R(ṽi, ṽj , X̄)
R(ṽi, X̄) the minimum-weight route that starts from ṽi and passes

through all virtual nodes in VX̄
W (ṽi, X̄) the weight of the tour R(ṽi, X̄)
R(v, X̄) a tour starts from v and passes through all nodes in VX̄

R̃(v, X̄) the minimum-weight tour over all R(v, X̄)
f∗
R̃
(v, X̄) the weight of the tour R̃(v, X̄)

π1(v,X) the one-label lower bound for a state (v,X)
πt1 (v,X) the first type of tour-based lower bound for a state (v,X)
πt2 (v,X) the second type of tour-based lower bound for a state (v,X)

Table 1: Summary of notations
mal solution one order of magnitude faster than the state-of-
the-art algorithm.

• To further reduce the search space of the PrunedDP algo-
rithm, we propose a progressive A∗-search algorithm, called
PrunedDP++, based on several carefully-devised lower-
bounding techniques. The PrunedDP++ algorithm also re-
ports progressively-refined feasible solutions, and is at least
one order of magnitude faster than the PrunedDP algorithm,
using much less memory.

• We conduct comprehensive experiments on several large s-
cale real-world graphs (≥ 10 million nodes) to evaluate our
algorithms, and the results confirm our theoretical findings.

The rest of this paper is organized as follows. In Section 2, we
formulate the problem and briefly review the parameterized DP al-
gorithm. In Section 3, we propose the PrunedDP algorithm and
develop the optimal-tree decomposition and conditional tree merg-
ing techniques. The PrunedDP++ algorithm and several nontrivial
lower bounding techniques are proposed in Section 4. Finally, we
review related work and conclude this paper in Section 6 and Sec-
tion 7 respectively.

2. PRELIMINARIES
Let G = (V,E) be a weighted graph, where V and E denote

the set of nodes and edges respectively. Let n = |V | and m =
|E| be the number of nodes and edges respectively. For each edge
e = (vi, vj) ∈ E, w(vi, vj) denotes the weight of e. For each
node v ∈ V , there is a set of labels, denoted by Sv , associated
with v. Let S =

⋃
v∈V Sv be the set of all labels. For each label

a ∈ S, we let Va ⊆ V be the group (set) of nodes where each
node in Va contains the label a. Note that by this definition, each
label corresponds to a group. Based on these notations, the Group
Steiner Tree (GST) problem [28] is formulated as follows.

The GST problem. Given a weighted and labelled graph G =
(V,E) and a subset of labels P (P ⊆ S), the GST problem seeks to
find the minimum-weight connected tree (i.e., the top-1 connected
tree with smallest weight) from G that includes all the labels in P .

For convenience, in the rest of this paper, we assume without
loss of generality that the graph G = (V,E) is a connected graph.
This is because if the graph is disconnected, we can solve the GST
problem in each maximal connected component of the graph, and
then pick the best connected tree as the answer.
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It is well known that the GST problem is NP-hard [28], and is
even inapproximable within a constant approximation factor by a
polynomial algorithm [18]. Therefore, there is no hope to com-
pute the GST (or find an approximate GST within constant pre-
formation ratio) in polynomial time unless P=NP. In the literature,
the state-of-the-art exact algorithm for the GST problem is a pa-
rameterized dynamic programming (DP) algorithm which runs in
O(3kn + 2k(n log n + m)) time [8], where k = |P | denotes the
number of given labels. Below, we briefly review such a parameter-
ized DP algorithm, as it forms the basis for devising our progressive
GST algorithms.

The parameterized DP algorithm. In the parameterized DP al-
gorithm, a state, denoted by (v,X), corresponds to a connected
tree rooted at v that covers all labels in X . Let T (v,X) be the
minimum-weight connected tree rooted at v that includes all labels
in X , and f∗

T (v,X) be the weight of T (v,X) (i.e., the total weight
of the edges in T (v,X)). Clearly, by these notations, the optimal
weight of a state (v,X) is f∗

T (v,X). Table 1 summarizes the im-
portant notations used in this paper.

Based on the definition of the state, the state-transition equation
of the parameterized DP algorithm proposed in [8] is given by

f∗
T (v,X) = min{ min

(v,u)∈E
{f∗

T (u,X) + w(v, u)},
min

(X=X1∪X2)
∧(X1∩X2=∅)

{f∗
T (v,X1) + f∗

T (v,X2)}}. (1)

As shown in Eq. (1), the optimal weight of the state (v,X) could be
obtained by either of the following two cases. The first case is that
the optimal connected tree, denoted by T (v,X), could be obtained
by growing an edge (v, u) from the minimum-weight subtree of
T (v,X) rooted at u including all labels in X , where u is a child
node of v (i.e., the first part of Eq. (1)). We refer to the state ex-
pansion operation in this case as the edge growing operation. The
second case is that T (v,X) could be obtained by merging two op-
timal subtrees rooted at v that includes all labels in X1 and X2

respectively, where X1 ∪ X2 = X and X1 ∩ X2 = ∅ (i.e., the
second part of Eq. (1)). Similarly, we refer to the state expansion
operation in this case as the tree merging operation.

Initially, for each node v with labels Sv , we have f∗
T (v, {p}) =

0, for each label p ∈ Sv . By Eq. (1), Ding et al. [8] proposed a
parameterized DP algorithm based on the best-first search strategy
to compute the minimum f∗

T (v, P ) over all v ∈ V . Specifically,
the parameterized DP algorithm uses a priority queue Q to main-
tain the states (e.g., (v,X)), in which the weight of a state is the
priority of that state. Initially, the state (v, {p}) for each p ∈ Sv is
inserted into Q. Then, the algorithm iteratively pops the smallest-
weight state from Q, and applies Eq. (1) to expand such a state. For
each expanded state, if it is already in Q, the algorithm updates its
weight using the smaller weight. Otherwise, the algorithm inserts
it into Q. The algorithm terminates until the popped state covers
all the labels in P . Clearly, by the best-first search strategy, the op-
timal state is always popped later than any intermediate state from
the priority queue, and thus the weight of the popped intermediate
state must be smaller than the optimal solution.

As shown in [8], the parameterized DP algorithm works well for
keyword search applications when both the parameter k and the
graph size are small. However, as discussed below, the parameter-
ized DP algorithm becomes impractical when the parameter k and
the graph size are large.

Limitations of the parameterized DP algorithm. First, the time
complexity of the parameterized DP algorithm relies on the expo-
nential factor 3k. Thus, the algorithm only works well for very
small values of k (e.g., k = 4 used in [8]) in large graphs. On
the other hand, the space complexity of the parameterized DP al-
gorithm is O(2kn). Clearly, when k is large, the algorithm will
quickly run out of memory in large graphs. Indeed, as shown in

our experiments, the parameterized DP algorithm does not work in
large graphs with relatively large k values (e.g., k = 8). Second,
the algorithm only generates a solution (i.e., the optimal solution)
when it terminates. However, in many practical applications (e.g.,
keyword search), users may prefer a sub-optimal solution in less
time, rather than wait for the algorithm to find the optimal solution.

The above discussions motivate us to answer the following ques-
tion: can we develop an algorithm that is not only more efficient
than the parameterized DP algorithm, but also reports sub-optimal
solutions during execution (not only when the algorithm termi-
nates)? In the following sections, we will propose several novel
algorithms to achieve those goals.

3. THE PROGRESSIVE GST ALGORITHM
In this section, we first propose a basic progressive GST algo-

rithm, called Basic, based on the parameterized DP algorithm in
[8]. Then, we propose a novel algorithm, called PrunedDP, to
reduce the search space of the Basic algorithm based on newly-
developed optimal-tree decomposition and conditional tree merg-
ing techniques.

3.1 The Basic algorithm
We first introduce a progressive search framework, and then

present the Basic algorithm following this framework.

The progressive search framework. Roughly speaking, a pro-
gressive search algorithm works in rounds, reporting a sub-optimal
and feasible solution with smaller error guarantees in each round,
until in the last round the optimal solution is obtained. More specif-
ically, we refer to a search algorithm as a progressive algorithm
when it satisfies the following two properties.

• Progressive property. The algorithm works in rounds. In
each round, the algorithm returns a feasible solution, and re-
ports the maximum error (with respect to the optimal solu-
tion) it may have.

• Monotonic property. The maximum error of a feasible so-
lution does not increase after each round. In other words, the
feasible solution reported in each round should be a refine-
ment of the previous solution. Until in the last round, the
optimal solution is obtained.

Clearly, the progressive property is desirable for many applica-
tions, because with the progressive property, we can always obtain
a feasible solution and also know its bound to the optimal solution
whenever we interrupt the algorithm. The monotonic property is
also desirable, because the maximum error in each round is guar-
anteed to be non-increasing, and thus the algorithm can obtain a
refined solution from one round to the next.

The basic progressive GST algorithm. Following the progressive
search framework, we devise a progressive GST algorithm, called
Basic, based on the parameterized DP algorithm in [8]. The general
idea of Basic is that we first construct a feasible solution for an
intermediate state (v,X) of the parameterized DP algorithm, then
keep refining the feasible solution, and also compute the bound for
that feasible solution.

Before proceeding further, we first introduce a preprocessing
procedure for any query P and graph G, which will be used in all
the proposed algorithms. Specifically, for a label p ∈ P , we create
a virtual node ṽp, and create an undirected edge (ṽp, v) with zero
weight for each v ∈ V that includes a label p. Then, we compute
the single-source shortest path from ṽp to all the other nodes in the
graph G. For each label p ∈ P , we independently perform this pro-
cess. Let dist(v, ṽp) be the shortest-path distance between v and
the virtual node ṽp. For a query P , we can pre-compute all those
shortest paths and dist(v, ṽp) by invoking the Dijkstra algorithm
k = |P | times, which takes O(k(m+ n log n)) time complexity.

After the above preprocessing, we can then construct a feasible
solution as follows. First, for each state (v,X), let X̄ = P\X
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Algorithm 1 Basic(G,P, S)

Input: G = (V,E), label set S, and the query label set P .
Output: the minimum weight of the tree that covers P .

1: Q ← ∅; D ← ∅;
2: best ← +∞; /* maintain the weight of the best feasible solution. */

3: for all v ∈ V do
4: for all p ∈ Sv do
5: Q.push((v, {p}), 0);

6: while Q �= ∅ do
7: ((v,X), cost) ← Q.pop();

8: if X = P then return cost;
9: D ← D ∪ {(v,X)}; X̄ ← P\X;

10: T ′(v, X̄) ← ∅;

11: for all p ∈ X̄ do
12: T ′(v, X̄) ← T ′(v, X̄)∪ Shortest-Path(v, ṽp);

13: T̃ (v, P ) ← MST(T ′(v, X̄) ∪ T (v,X));

14: best ← min{best, fT̃ (v, P )};

15: Report the approximation ratio for best;
16: for all (v, u) ∈ E do
17: update(Q,D, best, (u,X), cost + w(v, u));

18: for all X′ ⊆ X̄ and (v,X′) ∈ D do
19: update(Q,D, best, (v,X′ ∪ X), cost + D.cost(v,X′));

20: return +∞;

21: Procedure update(Q,D, (v,X), cost)

22: if (v,X) ∈ D then return;

23: if cost >= best then return;
24: if X = P then best ← min{best, cost};

25: if (v,X) /∈ Q then Q.push((v,X), cost);

26: if cost < Q.cost((v,X)) then Q.update((v,X), cost);

(i.e., X̄ be the complementary set of X with respect to the set P ).
For a node v and label set X̄ , there are |X̄| shortest paths from
v to ṽp for all p ∈ X̄ . We merge all those |X̄| shortest path-
s, resulting in a tree denoted by T ′(v, X̄). Second, we unite the
tree T (v,X) (corresponding to the state (v,X)) and T ′(v, X̄),
and then compute the minimum spanning tree (MST) of the u-

nited result, i.e., MST(T ′(v, X̄) ∪ T (v,X))). Let T̃ (v, P )
Δ
=

MST(T ′(v, X̄) ∪ T (v,X))). Clearly, T̃ (v, P ) is a feasible so-
lution, as it is a tree that covers all the labels in P .

Let fT̃ (v, P ) be the weight of the tree T̃ (v, P ). Then, fT̃ (v, P )
is an upper bound of the optimal solution. On the other hand, we
can always use f∗

T (v,X) as a lower bound for the optimal solution.
This is because by the best-first DP algorithm, the optimal solution
is popped later from the priority queue than any computed inter-
mediate state (v,X), and thus we have f∗

T (v,X) ≤ f∗(P ), where
f∗(P ) is the optimal solution for the GST query P . As a result,
for any intermediate state (v,X), we can always report a feasible

solution T̃ (v, P ) and its approximation ratio fT̃ (v, P )/f∗
T (v,X).

The algorithm is detailed in Algorithm 1. In Algorithm 1, we
use a tuple ((v,X), cost) to denote the state (v,X), where cost
denotes the weight of the tree that corresponds to the state (v,X).
Similar to the parameterized DP algorithm [8], Algorithm 1 follows
the best-first search strategy. In each round, the algorithm pops the
best state (v,X) from the priority queue Q (line 7), and uses a
set D to maintain all the states that have been computed (i.e., the
optimal weight of each state in D has been calculated). Based on

(v,X), we construct a feasible solution T̃ (v, P ) as described above
(lines 10-13).

To make the algorithm progressive, we use a variable best to
record the best feasible solution found so far, and then keep refin-
ing best in each round, and also report the approximation ratio for
best using the method described above (lines 14-15). In lines 16-
19, the algorithm expands and updates the states based on the state-
transition equation of the parameterized DP algorithm (i.e., Eq.(1)).
Note that unlike the parameterized DP algorithm, in line 23, the
Basic algorithm makes use of the current best solution for pruning
the unpromising states. This pruning technique not only decreases

T1

u

vkv2v1

T2 Tk

...

Figure 1: Illustration of the optimal-tree decomposition.

the running time of the parameterized DP algorithm, but also re-
duces the space overhead as well (because the unpromising states
will not be inserted into the priority queue Q). Consequently, Basic
is not just a progressive algorithm, it can also improve the efficiency
of the parameterized DP algorithm. However, although the Basic
algorithm is more efficient than the parameterized DP algorithm,
it still needs to search a large number of states to find the optimal
solution. Below, we propose a novel algorithm which drastically
reduces the search space of the Basic algorithm.

3.2 The PrunedDP algorithm
Recall that in the Basic algorithm, to obtain the optimal solu-

tion f∗(P ) for a query P , the algorithm must compute the op-
timal weights of all the intermediate states that are smaller than
f∗(P ) in terms of the best-first search strategy. An immediate
question is: can we avoid computing all such optimal weights to get
f∗(P )? Below, we propose a new algorithm based on optimal-tree
decomposition and conditional tree merging techniques to achieve
this goal. Specifically, let T ∗(P ) be the optimal tree with weight
f∗(P ). For simplicity, we assume that T ∗(P ) contains at least one
edge. We then have the following optimal-tree decomposition the-
orem. Proofs of all the theorems and lemmas in this paper can be
found in Appendix A.1.

THEOREM 1. Optimal-Tree Decomposition Theorem: As-
sume that each edge in the graph G has a positive weight. Then,
for the optimal tree T ∗(P ), there always exists a node u ∈ T ∗(P )
such that (i) the tree T ∗(P ) rooted at u has k (k ≥ 1) subtrees
T1, T2, · · · , Tk, and (ii) each subtree Ti (for i ∈ {1, 2, · · · , k})
has a weight smaller than f∗(P )/2.

Fig. 1 illustrates the idea of the optimal-tree decomposition,
where every subtree rooted at vi, for i = 1, · · · , k, has a weight
smaller than f∗(P )/2. According to Theorem 1, the optimal
tree can always be decomposed into several optimal subtrees with
weights smaller than f∗(P )/2. This result motivates us to devise a
two-stage algorithm to compute the optimal tree. In the first stage,
we compute all the optimal subtrees that have weights smaller than
f∗(P )/2 by the best-first DP algorithm. Then, in the second stage,
we merge the results obtained from the first stage to get the optimal
tree. This is because, after the first stage, all the optimal subtrees
with weights smaller than f∗(P )/2 have been generated, thus by
Theorem 1, we can obtain the optimal tree via merging the optimal
subtrees. To achieve this, we can apply the same method as used in
the best-first DP algorithm to merge the optimal subtrees. Specif-
ically, we can obtain the optimal tree by invoking two operations:
(i) edge growing, and (ii) tree merging. For example, in Fig. 1, the
optimal tree rooted at u can be obtained by growing an edge (vi, u)
from each optimal subtree rooted at vi, and then merging all those
edge-grown subtrees. Thus, without loss of optimality, for each op-
timal subtree generated in the first stage, we must perform an edge
growing operation. Then, for every two subtrees, if they can be
merged (i.e., share the same root), we need to perform a tree merg-
ing operation. Clearly, the optimal tree can always be obtained by
invoking these two operations.

Since the second stage of our algorithm invokes the same opera-
tions that are used in the best-first DP algorithm, we can integrate
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T1 T2 T3

v1 v2 v3

w1 w2 w3

Figure 2: Illustration of the optimality of Theorem 2.

them into the first stage. In particular, when we pop a state from
the priority queue in the best-first DP algorithm, we expand this
state only when its weight is smaller than f∗(P )/2. Clearly, by
adding this constraint to expand the states, all the optimal subtrees
with weights smaller than f∗(P )/2 can be computed. Moreover,
every subtree, which is obtained by invoking an edge growing op-
eration on a computed subtree, is generated; and every subtree that
is obtained by invoking a tree merging operation on two comput-
ed subtrees is also generated. After getting all these subtrees, we
merge two subtrees if they can form a feasible solution (i.e., covers
all labels in P ), and then select the best one as the optimal tree.

Interestingly, we discover that there is no need to generate ev-
ery subtree obtained by invoking the tree merging operation on two
computed subtrees. Without loss of optimality, we can add an addi-
tional constraint in the tree merging operation to avoid generating
unpromising subtrees in the best-first DP algorithm. Our technique
is based on the following conditional tree merging theorem.

THEOREM 2. Conditional Tree Merging Theorem: Without
loss of optimality, to expand a state (v,X) by a tree merging op-
eration in the best-first DP algorithm, we can merge two subtrees
T (v,X) and T (v,X ′) for X ′ ⊂ P\X only when the total weight
of these two subtrees is no larger than 2/3× f∗(P ).

By Theorem 2, we can further reduce a number of states generat-
ed in the best-first DP algorithm without loss of optimality, because
any intermediate state (not a feasible solution) with a weight larger
than 2f∗(P )/3 does not need to be generated by the tree merging
operation. It is important to note that this does not mean that all the
states with weights larger than 2f∗(P )/3 will not be generated by
our algorithm, because a state with weight larger than 2f∗(P )/3
may be generated by the edge growing operation, and also it may
be generated by merging two complementary states (i.e., (v,X)
and (v, X̄) with X = P\X) to form a feasible solution.

The optimality of Theorem 2. It should be noted that there is a
factor of 2/3 in Theorem 2. Clearly, a small factor is better than a
large one when pruning unpromising states. Thus, without loss of
optimality, we strive to find the minimum factor to reduce the num-
ber of states generated by the best-first DP algorithm. However,
interestingly, we find that the factor 2/3 is optimal. Below, we give
an example in which the factor cannot be smaller than 2/3. Con-
sider an optimal tree rooted at u as shown in Fig. 2. The optimal
tree has three subtrees which are denoted by Ti for i = {1, 2, 3}
with roots vi respectively. Suppose that the weight of each edge in
this tree is 1. Note that by our algorithm, the optimal solution in
this example must be obtained by merging two subtrees in which
one of them must have a weight no smaller than 2f∗(P )/3. More-
over, in this example, by our algorithm, we must invoke the tree
merging operation to obtain a subtree that has a weight no smaller
than 2f∗(P )/3. This is because, we cannot obtain such a subtree
by growing an edge from an optimal subtree with a weight smaller
than f∗(P )/2. Therefore, in this example, we cannot set the factor
to be a value smaller than 2/3, otherwise we cannot generate such a
subtree and thus cannot guarantee the correctness of the algorithm.
As a result, the factor 2/3 given in Theorem 2 is optimal.

Based on the above theoretical results, we are now ready to
present the PrunedDP algorithm. Note that to make the algorith-

Algorithm 2 PrunedDP(G,P, S)

Input: G = (V,E), label set S, and the query label set P .
Output: the minimum weight of the tree that covers P .

1: Q ← ∅; D ← ∅;
2: best ← +∞; /* maintain the weight of the best feasible solution. */

3: for all v ∈ V do
4: for all p ∈ Sv do
5: Q.push((v, {p}), 0);

6: while Q �= ∅ do
7: ((v,X), cost) ← Q.pop();

8: if X = P then return cost;
9: D ← D ∪ {(v,X)}; X̄ ← P\X;

10: T ′(v, X̄) ← ∅;

11: for all p ∈ X̄ do
12: T ′(v, X̄) ← T ′(v, X̄)∪ Shortest-Path(v, ṽp);

13: T̃ (v, P ) ← MST(T ′(v, X̄) ∪ T (v,X));

14: best ← min{best, fT̃ (v, P )};

15: Report the approximation ratio for best;
16: if (v, X̄) ∈ D then
17: update(Q,D, best, (v, P ), cost + D.cost(v, X̄));

18: continue;
19: if cost < best/2 then
20: for all (v, u) ∈ E do
21: update(Q,D, best, (u,X), cost + w(v, u));

22: for all X′ ⊂ X̄ and (v,X′) ∈ D do
23: cost ← D.cost(v,X′);

24: if cost + cost ≤ 2/3 × best then
25: update(Q,D, best, (v,X′ ∪ X), cost + cost);

26: return +∞;

m progressive, we can apply the same approach developed in the
Basic algorithm to produce progressively-refined results. In addi-
tion, a final issue is that Theorem 1 and Theorem 2 rely on the
optimal solution f∗(P ) of the GST problem which is unknown be-
fore the algorithm terminates. However, it is easy to verify that if
we use an upper bound of f∗(P ) to replace f∗(P ) in Theorem 1
and Theorem 2, the results still hold. Therefore, in our algorithm,
we can use the weight of the best feasible solution found so far as
an upper bound of f∗(P ). Since the best feasible solution is pro-
gressively improved, the bound becomes tighter and tighter, as the
algorithm searches more of the search space, and thus the pruning
power of the algorithm is progressively enhanced.

The algorithm is detailed in Algorithm 2. Note that PrunedDP
follows the same framework as the Basic algorithm to produce
progressively-refined feasible solutions (see lines 10-15 of Algo-
rithm 2). But drastically different from Basic, PrunedDP is based
on the pruned DP-search strategy developed in Theorem 1 and The-
orem 2. Specifically, in lines 16-18, the algorithm merges two com-
plementary computed states once they can form a feasible state (a
state that covers all query labels P ), and then invokes the same up-
date procedure as used in Algorithm 1 to update the feasible state.
Then, in lines 19-25, the algorithm expands the state (v,X) only if
its weight is smaller than best/2. This is because, according to the
results in Theorem 1, the algorithm does not need to expand a state
with weight no smaller than f∗(P )/2. In addition, in line 24, the
algorithm merges two optimal subtrees only if their total weight is
smaller than 2/3× best based on the conditional tree merging the-
orem. Clearly, the correctness of the algorithm can be guaranteed
by Theorem 1 and Theorem 2.

Cost analysis of the PrunedDP algorithm. It is worth noting
that the worst-case time and space complexity of the PrunedDP
algorithm is the same as that of the Basic algorithm. However,
compared to Basic, PrunedDP can prune a large number of un-
promising states using optimal-tree decomposition and conditional
tree merging techniques, and thus drastically reduces both the run-
ning time and memory overhead. In the experiments, we show that
PrunedDP is one order of magnitude faster than the Basic algo-
rithm, using much less memory.
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4. THE PROGRESSIVE A∗ ALGORITHM
Recall that the PrunedDP algorithm finds the optimal solution

in a pruned search space based on the best-first DP search strat-
egy. To further speed up the PrunedDP algorithm, we propose
a novel progressive algorithm, called PrunedDP++, based on the
A∗-search strategy over the pruned search space. Below, we first
propose several lower bounding techniques, which are crucial to
devise the PrunedDP++ algorithm.

4.1 Lower bounds construction
To devise an A∗-search algorithm for the GST problem, the key

is to establish an effective lower bound for each state (v,X) in the
search space [16, 7]. It is important to note that according to the
A∗-search theory [16, 7], the lower bound in our problem denotes
the bound from the current state (v,X) to its goal state (v, P ).
Thus, for a state (v,X), we need to design a lower bound for
the weight of the optimal subtree T (v, X̄) (i.e., f∗

T (v, X̄)), where
X̄ = P\X . In the following, we propose several effective low-
er bounds that are constructed via relaxing the constraints of the
optimal subtree T (v, X̄).

One-label lower bound. Note that the optimal subtree T (v, X̄)
must cover all the labels in X̄ . Here we develop a lower bound,
called one-label lower bound, by relaxing such a label covering
constraint. Our idea is that we consider the optimal connected tree
rooted at v that covers only one label in X̄ , where X̄ = P\X .
Specifically, let T (v, {x}) be the optimal connected tree rooted
at v that covers a label x ∈ X̄ , and f∗

T (v, {x}) be the weight
of T (v, {x}). Further, we let f∗

1 (v, X̄) be the weight of the
maximum-weight tree over all T (v, {x}) for x ∈ X̄ . Then, we
define the one-label lower bound π1(v,X) as follows.

π1(v,X)
Δ
= f∗

1 (v, X̄) = maxx∈X̄{f∗
T (v, {x})}. (2)

The following lemma shows that π1(v,X) is indeed a valid low-
er bound for a state (v,X).

LEMMA 1. For any state (v,X), we have π1(v,X) ≤
f∗
T (v, X̄).

Note that by definition, f∗
T (v, {x}) is equal to the shortest-

path distance between the node v and the virtual node ṽx (i.e.,
f∗
T (v, {x}) = dist(v, ṽx)), which can be obtained by invoking

the same preprocessing procedure used in Algorithms 1 and 2.
Therefore, for any state (v,X), the time complexity for comput-
ing π1(v,X) is O(|X̄|) after preprocessing.

Tour-based lower bounds. Recall that the optimal tree T (v, X̄)
must be a connected tree. By relaxing such a connected tree con-
straint, here we develop two novel tour-based lower bounds.

The first type of the tour-based lower bound is constructed as
follows. First, for a given set of labels P with k = |P |, we create a
virtual node ṽp for each label p ∈ P . Let VP denotes the set of all
virtual nodes. Then, we create an edge (ṽp, v) with zero weight for
each v ∈ V that includes a label p. After that, we can obtain a new
graph, called the label-enhanced graph. Second, we compute the
single-source shortest path from each virtual node ṽp to all the other
nodes in the label-enhanced graph. It is worth mentioning that this
procedure is different from the preprocessing procedure used for
constructing the feasible solution in Algorithm 1 and Algorithm 2,
and also for computing the one-label lower bound. Here we add
all virtual edges simultaneously for all the virtual nodes, whereas
in the previous preprocessing procedure, we independently process
each virtual node. Third, for X̄ ⊆ P , we let VX̄ be the set of all
virtual nodes that correspond to the labels in X̄ . For any i, j ∈ X̄
and X̄ ⊆ P , we let R(ṽi, ṽj , X̄) be the minimum-weight route
that starts from ṽi, ends at ṽj , and passes through all the virtual
nodes in VX̄ . Further, we let W (ṽi, ṽj , X̄) be the weight of the
route R(ṽi, ṽj , X̄).
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Figure 3: Illustration of the tour-based lower bounds.
Based on these notations, for a state (v,X) of the GST problem,

we can construct a tour R(v, X̄)
Δ
= (v ∼ R(ṽi, ṽj , X̄) ∼ v)

that starts from v, ends at v, and covers all labels in X̄ . Fig. 3(a)
illustrates such a tour. Note that for each virtual-node pair (ṽi, ṽj),
we have a tour R(v, X̄). To construct the lower bound, we intend

to find the minimum-weight tour. Specifically, we define R̃(v, X̄)
as the minimum-weight tour over all tours R(v, X̄) for all ṽi, ṽj ∈
VX̄ . Further, we let f∗

R̃
(v, X̄) be the weight of the optimal tour

R̃(v, X̄). Formally, we have

f∗
R̃
(v, X̄) = min

i,j∈X̄
{dist(v, ṽi) +W (ṽi, ṽj , X̄) + dist(ṽj , v)}, (3)

where dist(v, ṽi) denotes the shortest-path distance between v and
ṽi. For a state (v,X), we define the first type of tour-based lower
bound using the following formula:

πt1 (v,X)
Δ
= f∗

R̃
(v, X̄)/2. (4)

With this definition, we show that πt1(v,X) is a valid lower
bound.

LEMMA 2. For any state (v,X), we have πt1(v,X) ≤
f∗
T (v, X̄).

With Lemma 2, we successfully construct a lower bound for any
state (v,X) of the GST problem. The remaining question is how to
compute such a lower bound efficiently. According to Eq. (3), the
most challenging task is to compute W (ṽi, ṽj , X̄) for all i, j ∈ X̄ .
Below, we propose a DP algorithm to tackle this challenge.

For any i, j ∈ X̄ and X̄ ⊆ P , we define (ṽi, ṽj , X̄) as a state in
our DP algorithm, denoting a route that starts from ṽi, ends at ṽj ,
and passes through all the virtual nodes in VX̄ . Then, the recursive
equation of the DP algorithm is given as follows.

W (ṽi, ṽj , X̄) = min
p∈X̄\{j}

{W (ṽi, ṽp, X̄\{p}) + dist(ṽp, ṽj)}, (5)

where dist(ṽp, ṽj) denotes shortest path distance between two vir-
tual nodes ṽp and ṽj in the label-enhanced graph. We explain
Eq. (5) as follows. The optimal route w.r.t. the state (ṽi, ṽj , X̄)
can be obtained by expanding the optimal sub-route w.r.t. the s-
tate (ṽi, ṽp, X̄\{j}) with a path ṽp ∼ ṽj . Initially, we have
W (ṽi, ṽi, {ṽi}) = 0, for all ṽi ∈ VP .

By Eq. (5), we can implement the DP algorithm using the best-
first search strategy. Algorithm 3 details the DP algorithm. By
invoking Algorithm 3, we can compute W (ṽi, ṽj , X̄) for all i, j ∈
X̄ and X̄ ⊆ P . Below, we analyze the complexity of Algorithm 3.

THEOREM 3. The time and space complexity of Algorithm 3 is
O(2kk3 + k(m + n logn)) and O(2kk2 + n + m) respectively,
where k = |P | is the number of given labels.

PROOF. First, the shortest paths for all pairs (ṽj , ṽp) can be
pre-computed in O(k(m + n log n)) time using the Dijkstra al-

gorithm with a Fibonacci heap. Second, there are 2kk2 states in
total, thus the total cost for popping the top element from the pri-
ority queue is O(2kk2 log(2kk2)) = O(2kk3) using the Fibonac-
ci heap (line 7). Also, for each state, the cost used in lines 10-
15 is O(k) using the Fibonacci heap and pre-computed shortest-
path distances. Therefore, the total cost used in lines 10-15 is
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Algorithm 3 AllPaths(G,P )

1: Q ← ∅; D ← ∅;
2: for all p ∈ P do
3: Create a virtual node ṽp for p;

4: Create an edge (ṽp, v) with zero weight for each v ∈ V including a label p;

5: Q.push((ṽp, ṽp, {ṽp}), 0);

6: while Q �= ∅ do
7: ((ṽi, ṽj , X̄), cost) ← Q.pop();

8: W (ṽi, ṽj , X̄) ← cost;

9: D ← D ∪ {(ṽi, ṽj , X̄)};

10: for all p ∈ P and p /∈ X̄ do
11: ˜X ← X̄ ∪ {p};

12: ˜cost ← cost + dist(ṽj , ṽp);

13: if (ṽi, ṽp, ˜X) ∈ D then continue;

14: if (ṽi, ṽp, ˜X) /∈ Q then Q.push((ṽi, ṽp, ˜X),˜cost);

15: if ˜cost < Q.cost(ṽi, ṽp, ˜X) then Q.update((ṽi, ṽp, ˜X),˜cost);

O(2kk3). Putting it all together, the time complexity of Algorith-

m 3 is O(2kk3 + k(m + n log n)). For the space complexity, we
need to maintain the priority queue Q and the set of all the com-
puted states D which takes O(2kk2). We also need to maintain the
graph and the all-pair shortest-path distances between the virtual
nodes which take O(m + n + k2) in total. As a result, the space

complexity of Algorithm 3 is O(2kk2 + n+m).

It is worth mentioning that for a given query P , we can first
invoke Algorithm 3 to pre-compute all the W (ṽi, ṽj , X̄) for all

i, j ∈ X̄ and X̄ ⊆ P in O(2kk3 + k(m + n log n)) time. More-
over, the shortest-path distances dist(v, ṽi) and dist(ṽj , v) can al-
so be pre-computed within O(k(m + n log n)) time by invoking
the Dijkstra algorithm. Consequently, for each state (v,X), we
can compute πt1(v,X) in O(|X̄|) time by Eq. (3) and Eq. (4).

Note that the first type of tour-based lower bound needs to find
the minimum-weight tour over all virtual-node pairs (ṽi, ṽj). Be-
low, we propose the second type of tour-based lower bound, which
does not take a minimum operation over all virtual-node pairs.

Let R(ṽi, X̄) be the minimum-weight route that starts from
ṽi and passes through all virtual nodes in VX̄ . Further, we let
W (ṽi, X̄) be the weight of the route R(ṽi, X̄). Then, for a s-
tate (v,X), we construct the second type of the tour-based lower
bound, denoted by πt2(v,X), using the following formula.

πt2 (v,X)
Δ
= max

i∈X̄
{(dist(v, ṽi) +W (ṽi, X̄) + min

j∈X̄
{dist(ṽj , v)})}/2.

(6)

Eq. (6) includes three parts: (i) the shortest-path distance between
the node v to a virtual node ṽi, (ii) the route R(ṽi, X̄), and (iii)
the minimum shortest-path distance between the virtual nodes in
VX̄ to the node v. The second type of tour-based lower bound is
constructed by taking the maximum weight of the sum over these
three parts for all ṽi ∈ VX̄ . Fig. 3 illustrates the idea of this tour-
based lower bound, where dist(ṽa, v) = minj∈X̄{dist(ṽj , v)}.

It should be noted that the end point of the route R(ṽi, X̄) could
be any node in VX̄ . The following lemma shows that πt2(v,X) is
indeed a valid lower bound.

LEMMA 3. For any state (v,X), we have πt2(v,X) ≤
f∗
T (v, X̄).

To compute πt2(v,X), we can adopt a similar method as used
for computing πt1(v,X). Specifically, on the one hand, all the
shortest-path distances in Eq. (6) can be pre-computed. On the oth-
er hand, we have W (ṽi, X̄) = minj∈X̄{W (ṽi, ṽj , X̄)} by defi-

nition. Thus, all W (ṽi, X̄) can also be pre-computed via invoking
Algorithm 3. As a result, for each state (v,X), we are able to cal-
culate πt2(v,X) in O(|X̄|) time.

Compared to πt1(v,X), the lower bound πt2(v,X) does not
take a minimum operation over all virtual-node pairs. Instead, it
takes a maximum operation over all ṽi ∈ VX̄ . Theoretically, it is
very hard to compare the performance of these two lower bounds.
In practice, we can combine πt1(v,X) and πt2(v,X) by taking
the maximum operation to obtain a better tour-based lower bound
πt(v,X), i.e., πt(v,X) = max{πt1(v,X), πt2(v,X)}. In ad-
dition, we can further combine the one-label and tour-based lower
bounds to achieve a better lower bound by taking the maximum op-
eration. Let π(v,X) = max{π1(v,X), πt(v,X)}, then we have
the following lemma.

LEMMA 4. For any state (v,X), we have π(v,X) ≤
f∗
T (v, X̄).

4.2 The PrunedDP++ algorithm
Armed with the above lower bounds, we are ready to design the

PrunedDP++ algorithm, which finds progressively-refined feasible
solutions using A∗-search over the pruned search space. Specifical-
ly, PrunedDP++ is built on the PrunedDP algorithm. But unlike
PrunedDP, PrunedDP++ makes use of f∗

T (v,X)+π(v,X) as the
priority for each state (v,X) to perform best-first search, where
π(v,X) is the combined lower bound developed in Section 4.1.
Based on such an A∗-search strategy, PrunedDP++ can always s-
elect the most promising state to expand, and thus a large number
of unpromising states can be pruned. In the experiments, we will
show that PrunedDP++ is at least one order of magnitude faster
than PrunedDP. The detailed implementation of PrunedDP++ is
outlined in Algorithm 4.

The PrunedDP++ algorithm first invokes Algorithm 3 to com-
pute W (ṽi, ṽj , X̄) and W (ṽi, X̄) for all ṽi, ṽj ∈ VX̄ and X̄ ⊆ P
(line 1). Then, the algorithm initializes the priority queue Q and
the set D, and performs the best-first search using the A∗-search
strategy (lines 3-26). Note that in Algorithm 4, each state (v,X) is
represented by a tuple ((v,X), cost, lb), where cost and lb denote
the weight and the priority of the state (v,X) respectively. For each
state (v,X), lb is obtained by the sum of the weight and the lower
bound of that state (i.e., cost+ π(v,X)) in terms of the A∗-search
strategy. In Algorithm 4, the lower bound π(v,X) and priority lb
can be computed by invoking the lb procedure (lines 37-47).

The algorithm also applies the same method as used in Basic
and PrunedDP to generate progressively-refined feasible solu-
tions. Unlike Basic and PrunedDP, for any feasible solution
constructed by the state (v,X) in PrunedDP++, we can report
fT̃ (v, P )/(f∗

T (v,X) + π(v,X)) as the approximation ratio, be-
cause f∗

T (v,X) + π(v,X) is a lower bound of the optimal solu-
tion by the best-first search strategy. The general framework of
PrunedDP++ is very similar to that of PrunedDP, thus we omit
the details.

The major differences between PrunedDP++ and PrunedDP
are twofold. First, for each state (v,X), PrunedDP++ uses the
sum of the weight and the lower bound as the priority, whereas
PrunedDP only adopts the weight as the priority. Second, in the
update procedure (lines 28-36), PrunedDP++ needs to invoke the
lb procedure (lines 37-47) to compute the lower bound and the pri-
ority of the expanded state (line 30), and then determines whether
the state can be pruned or not (line 32). If the state cannot be
pruned, the algorithm needs to update the weight and the lower
bound (or the priority) of the state (line 35-36). The PrunedDP al-
gorithm, however, does not need to compute and update the lower
bound. In addition, it is important to note that in line 31 of Algo-
rithm 4, for each expanded state, the algorithm must take the max-
imum over the computed lb and the lb of its parent state, to ensure
the consistency of the lower bound. After this process, the correct-
ness of the algorithm can be guaranteed, which will be analyzed in
the following.
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Algorithm 4 PrunedDP++(G,P, S)

Input: G = (V,E), label set S, and the query label set P .
Output: the minimum weight of the connected tree that covers P .

1: AllPaths(G,P );

2: best ← +∞; /* maintain the weight of the current feasible solution. */

3: Q ← ∅; D ← ∅;
4: for all v ∈ V do
5: for all p ∈ Sv do
6: Q.push((v, {p}), 0, lb((v, {p}), 0, P ); /* lb is the priority in Q. */

7: while Q �= ∅ do
8: ((v,X), cost, lb) ← Q.pop(); /* pop the minimum lb element. */

9: if X = P then return best ← cost;
10: D ← D ∪ {((v,X), cost)}; X̄ ← P\X;

11: T ′(v, X̄) ← ∅;

12: for all p ∈ X̄ do
13: T ′(v, X̄) ← T ′(v, X̄)∪ Shortest-Path(v, ṽp);

14: T̃ (v, P ) ← MST(T ′(v, X̄) ∪ T (v,X));

15: best ← min{best, fT̃ (v, P )};

16: Report the approximation ratio for best;
17: if (v, X̄) ∈ D then
18: update(Q,D, P, best, (v, P ), cost + D.cost(v, X̄), lb);

19: continue;
20: if cost < best/2 then
21: for all (v, u) ∈ E do
22: update(Q,D, P, best, (u,X), cost + w(v, u), lb);

23: for all X′ ⊂ X̄ and (v,X′) ∈ D do
24: cost ← D.cost(v,X′);

25: if cost + cost ≤ 2/3 × best then
26: update(Q,D, P, best, (v,X′ ∪ X), cost + cost, lb);

27: return +∞;

28: Procedure update(Q,D, P, best, (v,X), cost, l̃b)

29: if (v,X) ∈ D then return;

30: lb ← lb((v,X), cost, P );

31: lb ← max{lb, l̃b};

32: if lb >= best then return;
33: if X = P then best ← min{best, cost};

34: if (v,X) /∈ Q then Q.push((v,X), cost, lb);

35: if lb < Q.lb((v,X)) then
36: Q.update((v,X), cost, lb); /* update both cost and lb */

37: Procedure lb((v,X), cost, P )

38: X̄ ← P\X;

39: if X̄ = ∅ then
40: lb ← 0;
41: else
42: lb1 ← mini,j∈X̄{(dist(v, ṽi) + W (ṽi, ṽj , X̄) + dist(ṽj , v))}/2;

43: lb2 ← max
i∈X̄

{(dist(u, ṽi) + W (ṽi, X̄) + min
j∈X̄

{dist(ṽj , u)})}/2;

44: lb ← max{lb1, lb2};

45: for all p ∈ X̄ do
46: lb ← max{lb, dist(v, ṽp)};

47: return cost + lb;

Correctness analysis. Recall that the PrunedDP++ algorithm re-
lies on two types of operations to expand a state (v,X): edge grow-
ing and tree merging. For the edge growing operation, we can ob-
tain a successor state (u,X) by expanding an edge (v, u), while for
the tree merging operation, we can get a successor state (v,X∪X ′)
through merging with a state (v,X ′). To show the correctness of
PrunedDP++, we need to prove that the developed lower bound-
s satisfy the consistent property defined in the A∗-search theory
[16, 7, 14] for these two state-expansion operations. Below, we
first prove that π1(v,X) and πt1(v,X) are consistent, and then we
introduce a technique to make πt2(v,X) consistent. Finally, we
show that the combination of all these lower bounds is also consis-
tent.

Specifically, Lemma 5 and Lemma 6 show that π1(v,X) and
πt1(v,X) are consistent, respectively.

LEMMA 5. For any state (v,X), we have (i) π1(u,X) +
w(v, u) ≥ π1(v,X), and (ii) π1(v,X ∪ X ′) + f∗

T (v,X
′) ≥

π1(v,X), where X ∩X ′ = ∅.

LEMMA 6. For any state (v,X), we have (i) πt1(u,X) +
w(v, u) ≥ πt1(v,X), and (ii) πt1(v,X ∪ X ′) + f∗

T (v,X
′) ≥

πt1(v,X), where X ∩X ′ = ∅.

Unfortunately, we find in the experiments that πt2(v,X) is
not consistent. However, we can use the following technique to
make it consistent. In particular, for a state (v,X), let (u,X)
and (v,X ∪ X ′) be its successor states by the edge growing and
tree merging operations, respectively. Then, for the successor s-
tate (u,X), we set πt2(u,X) = max{πt2(u,X), πt2(v,X) −
w(v, u)} as the new second type of tour-based lower bound. Like-
wise, for the successor state (v,X∪X ′), we set πt2(v,X∪X ′) =
max{πt2(v,X∪X ′), πt2(v,X)−f∗

T (v,X
′)}. After this process,

it is easy to verify that such a new tour-based lower bound is con-
sistent. According to A∗-search theory, the consistent property also
implies that the new bound is a valid lower bound [14]. For conve-
nience, in the rest of this paper, we refer to this new lower bound
as the second type of tour-based lower bound, and also denote it by
πt2(u,X). We notice that in A∗-search theory, a similar process
for inconsistent lower bounds was applied in [26]. In Algorithm 4,
we implement this process in line 31.

Finally, we show that the consistent property can be preserved
by taking the maximum operation over all the devised consistent
lower bounds. In particular, we have the following result.

LEMMA 7. Let π(v,X) = max{π1(v,X),πt1(v,X), πt2(v,X)}.
Then, for a state (v,X), we have (i) π(u,X)+w(v, u)≥ π(v,X),
and (ii) π(v,X∪X ′)+f∗

T (v,X
′)≥ π(v,X), where X∩X ′ = ∅.

Armed with Lemmas 5, 6, and 7, we conclude that Algorithm 4
can find the optimal solution for the GST problem by the optimality
of the A∗-search theory [16, 7].

Cost analysis. Note that the worst-case time and space complexity
of PrunedDP++ are no higher than those of the PrunedDP algo-
rithm. In the experiments, we show that the PrunedDP++ algorith-
m can achieve at least one order of magnitude acceleration over the
PrunedDP algorithm, using much less memory. This is because in
the PrunedDP++ algorithm, the lb in line 32 of Algorithm 4 can
be much larger than the weight used in PrunedDP. Moreover, lb
increases as the algorithm searches more of search space. On the
other hand, the weight of the best feasible solution best progres-
sively decreases, thus the pruning power of our algorithm becomes
increasingly strong. If both lb and best are close to optimal, most
of the unpromising states will be pruned by our algorithm (line 32).
Therefore, compared to PrunedDP, PrunedDP++ will generate a
much smaller number of states, and thus both the time and space
overhead will be drastically reduced.

Remark. Note that some applications may require to find r con-
nected trees with smallest weight (r is typically very small, e.g.,
r ≤ 50). As discussed in [8], the parameterized DP algorithm
can be adapted to find the top-r results. Specifically, the algorith-
m first finds the top-1 result, followed by top-2, top-3, and so on.
Clearly, such an algorithm is rather costly, because it is expensive
even for finding the top-1 result as analyzed in Section 2. Unlike
the parameterized DP algorithm, all the proposed algorithms report
progressively-refined results during execution, and the top-1 result
is found until algorithms terminate. In the experiments, we find
that our algorithms report many near-optimal solutions during exe-
cution, and thus we can select the best r results among them as the
approximate top-r results. On the other hand, an efficient algorith-
m for finding the top-1 GST is sufficient for identifying the top-r
GST with polynomial delay as shown in [21]. Thus, we can also
apply the framework proposed in [21] to extend our algorithms to
find the exact top-r results. As a consequence, we believe that our
algorithms are also very useful for the applications that require to
identify top-r results, albeit we mainly focus on finding the top-1
result (i.e., the minimum-weight connected tree) in this paper.
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5. EXPERIMENTS
In this section, we conduct comprehensive experiments to eval-

uate the proposed algorithms. We implement four various progres-
sive algorithms: Basic (Algorithm 1); PrunedDP (Algorithm 2);
PrunedDP+, an A∗-search algorithm based on PrunedDP and the
one-label lower bound; and PrunedDP++ (Algorithm 4). For a
fair comparison, we use Basic as the baseline, because it produces
progressively-refined results, and also is more efficient than the
state-of-the-art parameterized DP algorithm, as discussed in Sec-
tion 3.1. We evaluate the average query processing time, the av-
erage memory consumption, and the progressive performance of
all algorithms. In all the experiments, the reported query process-
ing time includes the time to pre-compute the shortest paths from
each virtual node to the other nodes and the time to pre-compute
W (ṽi, ṽj , X̄) by invoking Algorithm 3. We only report the memo-
ry allocated for query processing as the memory overhead, without
including the memory used to store the graph, because the graph
size remains constant for all queries. In addition, we also imple-
ment BANKS-II [19], which is the widely-used approximation al-
gorithm for GST search in the keyword search application, to com-
pare the performance between our exact algorithms and existing
approximation algorithms. All the experiments are conducted on
a machine with two 3.46GHz Intel Xeon CPUs and 96GB main
memory running Red Had Enterprise Linux 6.4 (64-bit), and all the
algorithms are implemented in C++.

Datasets. We use two large scale real-world datasets, DBLP1 and
IMDB2, which are two widely-used datasets for keyword search
in graphs [8]. The DBLP dataset contains 15, 825, 211 nodes and
19, 609, 604 edges, while the IMDB datasets includes 30, 407, 193
nodes and 46, 971, 820 edges. Each node in these datasets consists
of a set of labels (or keywords). Our main goal is to evaluate the
performance of the GST search algorithms on these datasets. We
also perform case studies on these datasets to evaluate the effective-
ness of the proposed methods in the keyword search application.

Parameters and query generation. We vary two parameters in
our experiments, namely, knum and kwf. knum is the number of
labels in the query P (i.e., knum = |P |), and kwf is the average
number of nodes containing each label in the query (i.e., the label
frequency). knum is selected from 5, 6, 7, and 8 with a default
value of 6, and kwf is selected from 200, 400, 800, and 1600 with
a default value of 400. Unless otherwise specified, when varying a
parameter, the values of the other parameters are set to their default
values. Each query is generated by randomly selecting knum labels
from the label set. In each test, we randomly generate 50 queries
and report the average results over all of them.

We mainly perform six different experiments based on the above
setting. In the first three experiments, we intend to test the query
processing time and memory usage of various algorithms in a pro-
gressive manner. We vary the approximation ratio from 8 to 1
for each algorithm and report the average time/memory consump-
tion with a decreasing approximation ratio during algorithm execu-
tion. In the fourth experiment, we aim to evaluate the progressive
performance of various algorithms. In the last two experiments,
we compare our best algorithm with the approximation algorithm
BANKS-II, and conduct case studies to show the effectiveness of
our approaches in the keyword search application. Additionally,
we test the performance of our algorithms on graphs with different
topologies, and also show the performance of our best algorithm
for relatively large knum values. Due to space limit, these two ad-
ditional experiments are reported in Appendix A.2.

Exp-1: Query processing time (vary knum). In this experiment,
we vary knum from 5 to 8 and test the processing time of various

1http://dblp.dagstuhl.de/xml/
2http://www.imdb.com/interfaces/

algorithms with a decreasing approximation ratio. The results for
the DBLP and IMDB datasets are shown in Fig. 4 and Fig. 5 re-
spectively. Since the results on these two datasets are very similar,
we focus on describing the results on the DBLP dataset. Specifi-
cally, from Fig. 4, we make the following observations.

First, all algorithms take a certain amount of initialization time
to pre-compute the shortest paths from each virtual node to al-
l the nodes in the graph, before reporting a feasible solution.
PrunedDP++ also spends time pre-computing all W (ṽi, ṽj , X̄) by
invoking Algorithm 3. The initialization time increases when knum
increases. The time to compute all W (ṽi, ṽj , X̄) in PrunedDP++
can almost be omitted because such time cost is independent of the
graph size as shown in Section 4.1.

Second, the approximation ratio for each algorithm becomes bet-
ter when more time is spent, until it finally reaches 1, which indi-
cates that the optimal solution has been found. The processing time
of Basic and PrunedDP are very similar when the approximation
ratio is larger than 2 because, in PrunedDP, the weight of most
intermediate states cannot reach f∗(P )/2 and they apply the same
process to compute the weights of those states. However, when
the approximation ratio becomes smaller, the processing time of
Basic increases sharply, while the processing time of PrunedDP
becomes stable. PrunedDP+ shows significant improvement over
PrunedDP using the A∗-search strategy, and PrunedDP++ makes
further improvement over PrunedDP+ using the novel tour-based
lower bounding techniques. For example, when knum = 6,
Basic, PrunedDP, PrunedDP+, and PrunedDP++ take 732.4 sec-
onds, 75.5 seconds, 22.2 seconds, and 7.1 seconds respectively
to find the optimal solution as shown in Fig. 4 (b). In gener-
al, PrunedDP++ is more than one order of magnitude faster than
PrunedDP and more than two orders of magnitude faster than
Basic. These results are consistent with our theoretical analysis
in Sections 3 and 4.

Finally, to achieve a certain approximation ratio, the processing
time for each algorithm increases with increasing knum. Taking
PrunedDP as an example, to achieve an approximation ratio of 1
for knum = 5, 6, 7, 8, the algorithm spends 34.1 seconds (Fig. 4
(a)), 75.5 seconds (Fig. 4 (b)), 404.7 seconds (Fig. 4 (c)) , and
750.9 seconds (Fig. 4 (d)) respectively. When knum increases,
the gap between PrunedDP++ and PrunedDP+ increases and the
gap between PrunedDP+ and PrunedDP decreases. This is be-
cause when knum increases, the lower bound used in PrunedDP+
tends to be more loose, which degrades the performance of the
PrunedDP+ algorithm.

Exp-2: Query processing time (vary kwf). In this experiment, we
vary kwf from 200 to 1600, and test the processing time with a de-
creasing approximation ratio. The results on the DBLP and IMDB
datasets are reported in Fig. 6 and Fig. 7 respectively. Again, the
results on these datasets are very similar, so we focus on describing
the results on the DBLP dataset. From Fig. 6, we make the follow-
ing observations: First, when kwf increases, the processing time
of Basic, PrunedDP, and PrunedDP+ tend to decrease. The rea-
son is that when kwf is small, the weight of the optimal tree tends
to be large, which may result in longer processing time for Basic,
PrunedDP, and PrunedDP+. For example, when kwf decreases
from 1600 to 200, to achieve an approximation ratio of 1, the pro-
cessing time of PrunedDP increases from 55.3 seconds to 141.5
seconds. However, the performance of PrunedDP++ is not large-
ly influenced by kwf of the query due to the effective tour-based
lower bounding techniques. Second, when kwf increases, the gap
between PrunedDP+ and PrunedDP++ decreases. For example,
for kwf = 200, 400, 800, and 1600, to achieve an approximation
ratio of 1, the processing time of PrunedDP+ is 10 times (Fig. 6
(a)), 3 times (Fig. 6 (b)), 2.5 times (Fig. 6 (c)), and 1.4 times (Fig. 6
(d)) of that of PrunedDP++, respectively. The reason is that, when
kwf increases, the lower bound computed by PrunedDP+ tends
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(d) knum = 8
Figure 4: Query Processing Time vs. Approximation Ratio: Vary Number of Labels (knum) on DBLP
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(d) knum = 8
Figure 5: Query Processing Time vs. Approximation Ratio: Vary Number of Labels (knum) on IMDB

3.16

10

31.6

100

316

1K

3.2K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(a) kwf = 200

3.16

10

31.6

100

316

1K

3.2K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(b) kwf = 400
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(c) kwf = 800
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(d) kwf = 1600
Figure 6: Query Processing Time vs. Approximation Ratio: Vary Label Frequency (kwf) on DBLP
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(c) kwf = 800
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(d) kwf = 1600
Figure 7: Query Processing Time vs. Approximation Ratio: Vary Label Frequency (kwf) on IMDB
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(d) knum = 8
Figure 8: Memory Overhead vs. Approximation Ratio: Vary Number of Labels (knum) on DBLP
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(d) kwf = 1600
Figure 9: Memory Overhead vs. Approximation Ratio: Vary Label Frequency (kwf) on DBLP
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Figure 10: Progressive Performance Testing (knum = 8, kwf = 400)

knum kwf Total Time Appro Ratio Total Time Tr

BANKS-II BANKS-II PrunedDP++ PrunedDP++
5 400 88.0 secs 1.22 6.5 secs 6.4 secs
6 400 109.1 secs 1.40 7.1 secs 7.1 secs
7 400 131.2 secs 1.31 17.8 secs 9.9 secs
8 400 162.4 secs 1.38 18.4 secs 7.8 secs
6 200 110.8 secs 1.07 9.6 secs 6.4 secs
6 800 109.0 secs 1.20 14.4 secs 10.7 secs
6 1, 600 109.1 secs 1.25 13.2 secs 6.8 secs

Table 2: Comparison with BANKS-II on DBLP

to be tighter and tighter, and thus the bounds of PrunedDP+ and
PrunedDP++ tend to be similar.

Exp-3: Memory consumption. In this experiment, we evaluate
the memory overhead of all the algorithms with a decreasing ap-
proximation ratio. To this end, we vary the parameters knum from
5 to 8 and kwf from 200 to 1600, respectively. We test all the
algorithms on the DBLP dataset, and similar results can also be
observed on the IMDB dataset. Fig. 8 and Fig. 9 depict the re-
sults with varying knum from 5 to 8 and varying kwf from 200
to 1600, respectively. Compared to Fig. 4 and Fig. 6, the curves
for memory consumption for all the algorithms are very similar
to those for query processing time under the same parameter set-
tings. This is because both the memory and time overhead for
each algorithm are roughly proportional to the number of states
generated and, unsurprisingly, the curves are similar. In addition,
PrunedDP++ uses less than 1GB memory to find the optimal so-
lution even when knum =8. In the same setting, PrunedDP+ us-
es around 3.16GB memory and PrunedDP uses more than 10G-
B memory. The baseline algorithm (Basic) performs even worse,
using more than 31.6GB memory to obtain a 1.41-approximation
solution (see Fig. 8(e)). These results show that PrunedDP++ is
indeed much more memory-efficient than the other algorithms.

Exp-4: Progressive Performance Testing. In this experiment,
we test how well the reported feasible solutions are progressive-
ly improved during algorithm execution. To this end, we report
the lower bounds denoted by LB and the weights of the feasible
solutions denoted by UB (because it is an upper bound of the op-
timal solution) when a feasible solution is generated for all the al-
gorithms. We set knum = 8 and kwf = 400, and similar re-
sults can also be obtained for the other values of knum and kwf.
The results are shown in Fig. 10. As desired, for each algorith-
m, we can see that LB monotonically increases and UB monoton-
ically decreases with increasing running time. In general, for each
algorithm, the gap between the reported LB and UB becomes s-
maller with increasing running time. Clearly, if such a gap closes,
the algorithm has found the optimal solution. However, the gap
for the Basic algorithm (Fig. 10(a)) is relatively large compared to
the other algorithms. Moreover, it dose not close within the one-
hour time limit on the DBLP dataset. The gap between LB and
UB for the PrunedDP algorithm (Fig. 10(b)) quickly closes on
the DBLP dataset when the running time is larger than 316 sec-
onds. The reason is as follows. After 316 seconds, the weight
of most states in the PrunedDP algorithm may reach f∗(P )/2,
thus such states will not be further expanded by the algorithm. As
a consequence, the optimal solution can be quickly generated by
merging these states. These results indicate that the PrunedDP
algorithm exhibits much better progressive performance than the
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Figure 11: Case Study on DBLP using PrunedDP++ (knum =
8, Processing Time = 7.5 Seconds)
baseline algorithm. Furthermore, as can be seen from Fig. 10(c)
and Fig. 10(d), PrunedDP+ shows much better progressive perfor-
mance than PrunedDP, and PrunedDP++ can further achieve sig-
nificant performance improvement over PrunedDP+ on the DBLP
dataset. For example, the PrunedDP++ algorithm quickly narrows
the gap between LB and UB in less than 10 seconds, and clos-
es the gap within 20 seconds, whereas the PrunedDP+ algorithm
does not close the gap in 100 seconds. We also show the result of
PrunedDP++ on the IMDB dataset in Fig. 10(e). As can be seen,
the PrunedDP++ algorithm results in a 2-approximation solution
within 10 seconds, finds a near-optimal solution within 31.6 sec-
onds, and obtains the optimal solution taking around 110 seconds.
These results demonstrate that the PrunedDP++ algorithm exhibits
excellent progressive performance in practice, which further confir-
m our theoretical findings.

Exp-5: Comparison with the Approximation Algorithm. In
this experiment, we compare PrunedDP++ with the approxima-
tion algorithm BANKS-II [19]. We report the processing time of
BANKS-II and PrunedDP++, as well as the approximation ratio
of the best answer reported by BANKS-II. Since PrunedDP++
reports answers in a progressive manner, we also report the pro-
cessing time of PrunedDP++ to generate an answer with at least
the same quality as BANKS-II, and we denote such processing
time as Tr . The results on the DBLP dataset are shown in Ta-
ble 2, and similar results on IMDB dataset are shown in Appendix
A.2. We test 7 different combinations of knum and kwf. As can
be seen, PrunedDP++ is 7.4 to 15.4 times faster than BANKS-II,
because BANKS-II typically needs to explore the whole graph
to get an approximate answer while PrunedDP++ visits only a
part of the graph to output the optimal answer. For example,
with the default parameter setting (knum = 6 and kwf = 400),
BANKS-II computes an 1.4-approximate answer in 109.1 second-
s while PrunedDP++ outputs the optimal answer taking only 7.1
seconds. When knum = 8, although PrunedDP++ requires 18.4
seconds to get the optimal answer, it only needs 7.8 seconds to ob-
tain the answer with at least the same quality as the answer returned
by BANKS-II. In this case, PrunedDP++ is 20.8 times faster than
BANKS-II to generate the answer with the same quality.

Exp-6: Case Study. In this experiment, we conduct a case study
on the DBLP dataset to compare the effectiveness of the exact GST
computed by PrunedDP++ and the approximate GST calculated

101



Paper: Data Mining: An
Overview from a

Database Perspective

Written By
Author:

Jeffrey D. Ullman

Cite

Data Cubes Efficiently
Paper: ImplementingPaper: Selecting and

Reporting What is 
Interesting

Written By
Author:

Gregory Piatetsky-Shapiro

Write

Jon Kleinberg
Paper: Interview with

Cite

Systems: Achievements 
Paper: Database

and Opportunities

Written By

Author:
Michael Stonebraker

Cite

Cite

Paper: Supporting Data
Mining of Large

Databases by Visual
Feedback Queries

Paper: Research Problems
in Data Warehousing

Written By

Author:
Jennifer Widom

Cite

Paper: Finding 
Interesting Rules from

Large Sets of Discovered
Association Rules

Paper: Mining Frequent
Patterns without

Candidate Generation

Written By
Author:

Jian Pei

Cite

Cited By

Written By
Author:

Jiawei Han Paper: Classification and
Regression Trees

Paper: A Guide to the
Literature on Learning

Probabilistic
Networks from Data

Paper: Mean Field
Theory for Sigmoid

Belief Networks

Written By
Author:

Michael I. Jordan

Cited By

Cite

Cite

Written By

Philip S. Yu
Author:

Figure 12: Case Study on DBLP using BANKS-II (knum = 8, Processing Time = 151.6 Seconds)

by the approximation algorithm BANKS-II [19]. An additional
case study on the IMDB dataset can be found in Appendix A.2.
We use the query P = {“Jiawei Han”, “Philip S. Yu”, “Jeffrey D.
Ullman”, “Jian Pei”, “Jennifer Widom”, “Michael Stonebraker”,
“Jon Kleinberg”, “Michael I. Jordan”}, which includes 8 professor
names. The answer reported by PrunedDP++ (taking 7.5 seconds)
is shown in Fig. 11. As can be seen, the answer contains 14 edges,
and the 8 professors are divided into two subgroups. The first sub-
group contains “Jiawei Han”, “Philip S. Yu”, and “Jian Pei”, in
which “Jiawei Han” and “Jian Pei” collaboratively write a paper
which cites a paper written by “Philip S. Yu”. The second subgroup
contains “Jeffrey D. Ullman”, “Michael Stonebraker”, ‘Jon Klein-
berg”, “Michael I. Jordan”, and “Jennifer Widom”, in which “Jon
Kleinberg” and “Michael I. Jordan” each collaborates with another
professor “Michael J. Franklin” who further collaborates with “J-
effrey D. Ullman”, “Michael Stonebraker”, and “Jennifer Widom”.
The two subgroups are connected by “Jennifer Widom”. The an-
swer reported by BANKS-II (taking 151.6 seconds) is shown in
Fig. 12. In this answer, a paper written by “Jiawei Han” and “Philip
S. Yu” cites another five papers which is directly/indirectly related
to five professor names in P , and there are 19 edges in total. Such
a result does not exhibit any subgroup information. Obviously, the
answer reported by PrunedDP++ is more compact and better cap-
tures the relationship among the 8 authors in P than the answer
returned by BANKS-II. These results confirm the effectiveness of
our approaches for the keyword search application.

6. RELATED WORK
The GST problem and its applications. The GST problem is
a generalization of the traditional Steiner tree problem which was
introduced by Reich and Widmayer in [28], motivated by an ap-
plication in VLSI design. Recently, the GST problem has been
widely used to keyword search in the database community [3, 19,
8], and it has also been applied to search for a team of experts in
a social network [22]. From a computational point of view, the
GST problem is known to be NP-hard [28]. In [18], Ihler showed
that the GST problem cannot be approximated within a constant
performance ratio by any polynomial algorithm unless P=NP. The
lower bound of the approximation ratio is known to be O(ln k)
[12], where k denotes the number of groups. The polylogarithmic
approximation algorithms for the GST problem were obtained in
[5, 13] based on the technique of linear programming relaxation.
However, such approximation algorithms are very hard to handle
large graphs, due to the high computational overhead of linear pro-
gramming. To solve the GST problem optimally, Ding et al. [8]
proposed a parameterized DP algorithm using the number of group-
s k as a parameter, which is a generalization of the well-known
Dreyfus-Wagner algorithm for the traditional Steiner tree problem
[9]. The parameterized DP algorithm was shown to be efficient
for handling large graphs when the parameter k is very small (e.g.,

k = 4) [8]. However, the parameterized DP algorithm cannot pro-
vide progressively-refined solutions and it only works well for very
small k values. Instead, in this paper, we propose several efficient
and progressive algorithms to solve the GST problem. Our best al-
gorithm is shown to be at least two orders of magnitude faster than
the parameterized DP algorithm, using much less memory.

Anytime algorithms. Our work is also closely related to the any-
time algorithms that have been studied in artificial intelligent and
data mining communities [27, 32, 15, 29, 4]. For example, Mouad-
dib and Zilberstein [27] studied a knowledge-based anytime algo-
rithm for real-time decision making applications. Hansen and Zhou
[15] proposed an anytime heuristic search algorithm based on the
technique of weighted heuristic search algorithm. Ueno et al. [29]
proposed an anytime nearest neighbor classification algorithm for
stream mining. Esmeir and Markovitch [10] studied an anytime de-
cision tree induction algorithm for classification task. Mai et al. [4]
proposed an anytime density-based clustering algorithm based on a
lower-bounding technique for the similarity measure. Generally, all
the above anytime algorithms are algorithms that can be terminated
at any time to return an intermediate solution, and the quality of
the intermediate solution can be improved progressively. Howev-
er, unlike our progressive GST algorithm, all the above mentioned
anytime algorithms do not focus on graph data. To the best of our
knowledge, this is the first work to study progressive algorithms for
the GST problem over large-scale graph data. It is worth mention-
ing that progressive algorithms were also studied in the computa-
tional geometry and database communities. For example, in [31],
Zhang et al. proposed a progressive algorithm for computing the
optimal location query problem in spatial databases. Alewijnes et
al. [1] proposed several progressive algorithms for computational
geometric problems. Once again, all of those algorithms do not fo-
cus on graph data. In addition, the term of progressive algorithms
were also used in keyword search literature [23, 24]. However,
substantially different from our progressive search algorithm, the
algorithms proposed in [23, 24] are based on the classic threshold
algorithm [11] to progressively identify the top-r answers.

7. CONCLUSION
In this paper, we first propose an efficient and progressive algo-

rithm, called PrunedDP, based on two novel optimal-tree decom-
position and conditional tree merging techniques. The PrunedDP
algorithm is not only able to produce progressively-refined results
during algorithm execution, but it is also one order of magnitude
faster than the state-of-the-art algorithm. Second, to further speed
up the PrunedDP algorithm, we propose a progressive A∗-search
algorithm, named PrunedDP++, which can achieve at least one
order of magnitude acceleration over the PrunedDP algorithm. Fi-
nally, we conduct extensive performance studies over several large-
scale graphs (≥ 10 million nodes), and the results demonstrate the
high efficiency and effectiveness, as well as excellent progressive
performance of the proposed algorithms.
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A. APPENDIX
A.1 Missing proofs

THEOREM 1. Optimal-Tree Decomposition Theorem: As-
sume that each edge in the graph G has a positive weight. Then,
for the optimal tree T ∗(P ), there always exists a node u ∈ T ∗(P )
such that (i) the tree T ∗(P ) rooted at u has k (k ≥ 1) subtrees
T1, T2, · · · , Tk, and (ii) each subtree Ti (for i ∈ {1, 2, · · · , k})
has a weight smaller than f∗(P )/2.

PROOF. We can construct the optimal-tree decomposition using
the following procedure. First, we randomly select a node from
T ∗(P ) as the root u. If all the subtrees of the tree rooted at u have
weights smaller than f∗(P )/2, we are done. Otherwise, there must
be a subtree Ti that has a weight no smaller than f∗(P )/2. Let vi
be the root of such a subtree Ti. Then, we move the root from
u to vi, and recursively execute the same procedure. Fig. 13 illus-
trates this movement procedure. Note that the movement procedure
is nonreversible (i.e., we cannot move the root from vi to u), be-
cause the subtree rooted at vi (i.e., Ti) has a weight no smaller than
f∗(P )/2 whereas the remaining part of the tree rooted at u has a
weight smaller than f∗(P )/2. More specifically, let us consider
the tree shown in Fig. 13 (left panel). Since the tree rooted at vi
has a weight no smaller than f∗(P )/2 and the weight of the edge
(u, vi) is positive, thus the weight of the left-part subtree rooted at
u must be smaller than f∗(P )/2. As a result, the procedure cannot
move back from vi to u, and thus in each movement, the procedure
must replace the root with a new node. Since the number of nodes
in T ∗(P ) is bounded, the movement procedure must be terminated
in finite number of steps. Once the procedure terminates, we ob-
tain a tree rooted at u that satisfies the conditions as stated in the
theorem.

THEOREM 2. Conditional Tree Merging Theorem: Without
loss of optimality, to expand a state (v,X) by a tree merging op-
eration in the best-first DP algorithm, we can merge two subtrees
T (v,X) and T (v,X ′) for X ′ ⊂ P\X only when the total weight
of these two subtrees is no larger than 2/3× f∗(P ).
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Figure 13: Illustration of the movement from a root u to vi.
PROOF. To prove the theorem, we need to show that the optimal

solution can still be obtained using the conditional tree merging s-
trategy. By Theorem 1, we can assume, without loss of generali-
ty, that the optimal solution is a tree rooted at u with k subtrees,
T1, · · · , Tk, whose roots are vi respectively and weights are small-

er than f∗(P )/2 (see Fig. 1). Let T̃i be the edge-grown subtree that
is grown by Ti with an edge (vi, u). Then, there are three different

cases: (1) the weight of each T̃i is smaller than f∗(P )/2, (2) there

is only one edge-grown subtree T̃i that has a weight no smaller than
f∗(P )/2, and (3) there are two edge-grown subtrees and each one
has a weight f∗(P )/2.

In case (1), we claim that the optimal tree can always be divid-
ed into two subtrees such that each of them has a weight no larger
than 2f∗(P )/3. In particular, we can obtain such a division using
the following procedure. First, we pick the top-1 maximum-weight
edge-grown subtree. If its weight is no smaller than f∗(P )/3, we
are done. This is because, the union of the remaining edge-grown
subtrees must have a weight no larger than 2f∗(P )/3. Since the
top-1 maximum-weight edge-grown subtree has a weight smaller
than f∗(P )/2 (by the condition of case (1)), its weight is also s-
maller than 2f∗(P )/3, and thus we obtain a feasible division. Oth-
erwise, we pick the top-2 maximum-weight edge-grown subtree,
and merge it with the top-1 maximum-weight edge-grown tree. If
the merged edge-grown tree has a weight no smaller than f∗(P )/3,
then we are done. Since the top-1 maximum-weight edge-grown
subtree has a weight smaller than f∗(P )/3 in this case, the weight
of the merged edge-grown tree must be smaller than 2f∗(P )/3 (be-
cause the weight of the top-2 maximum-weight edge-grown subtree
is also smaller than f∗(P )/3). On the other hand, the union of the
remaining edge-grown subtrees must have a weight no larger than
2f∗(P )/3. Thus, in this case, we obtain a feasible division. We
can perform the same procedure recursively until we get a feasible
division. Therefore, under the case (1), to expand a state (v,X) in
the best-first DP algorithm, there is no need to merge two subtrees
if the total weight of them is larger than 2f∗(P )/3. This is because
under the case (1), the optimal solution can always be obtained by
merging two subtrees with weights no larger than 2f∗(P )/3, and
thus we do not need to generate a subtree that has a weight larger
than 2f∗(P )/3 via merging two subtrees.

In case (2), since there is an edge-grown subtree T̃i with weight
no smaller than f∗(P )/2, thus by our best-first DP algorithm, the

state corresponding to such a tree T̃i will not be expanded (see
Theorem 1). On the other hand, the total weight of all the remaining
edge-grown subtrees must be no larger than f∗(P )/2, and thus no
larger than 2/3 × f∗(P ). In case (3), since both the two edge-
grown subtrees have weights f∗(P )/2, there is no need to expand
the states corresponding to these two subtrees by our algorithm.
Putting it all together, the theorem is established.

LEMMA 1. For any state (v,X), we have π1(v,X) ≤
f∗
T (v, X̄).

PROOF. Since π1(v,X) denotes the weight of the optimal tree
rooted at v that covers only one label in X̄ , π1(v,X) must be s-
maller than the weight of the optimal tree rooted at v that covers all
labels in X̄ , which is exactly equal to f∗

T (v, X̄).

LEMMA 2. For any state (v,X), we have πt1(v,X) ≤
f∗
T (v, X̄).

PROOF. Recall that f∗
T (v, X̄) denotes the optimal weight of a

connected tree rooted at v that covers all the labels in X̄ . We can

double every edge in this optimal tree T (v, X̄), and thus obtain an
Euler tour that starts from v and also ends at v. Clearly, the weight
of such a tour should be no less than the weight of the optimal tour
starting from v and ending at v, and covering all the labels in X̄ . As
a result, we have 2f∗

T (v, X̄) ≥ f∗
R̃
(v, X̄), and thereby the lemma

is established.

LEMMA 3. For any state (v,X), we have πt2(v,X) ≤
f∗
T (v, X̄).

PROOF. First, we can add the virtual nodes and virtual edges
for the optimal tree T (v, X̄), and thus result in a graph with weight
f∗
T (v, X̄). Then, we double the edges of such a graph, and ob-

tain an Euler graph G̃(v, X̄) with weight 2f∗
T (v, X̄). Clearly,

in G̃(v, X̄), we have an Euler tour that starts from v, ends at v,

and passes through all edges in G̃(v, X̄). For each virtual node
ṽi ∈ VX̄ , we can always decompose such an Euler tour into three

parts: (i) the path from v to ṽi, (ii) the minimum-weight route R̃
that starts from ṽi and passes through all virtual nodes in VX̄ , and
(iii) the path from ṽj to v, where ṽj is the end node of the route

R̃. By our definition, the total weight of these three parts must
be no less than dist(v, ṽi) + W (ṽi, X̄) + minj∈X̄{dist(ṽj , v)}.
Since this result hold for every virtual node ṽi, we can con-
clude that the weight of the Euler tour must be no less than
maxi∈X̄{(dist(v, ṽi)+W (ṽi, X̄)+minj∈X̄{dist(ṽj , v)})}, and
therefore the lemma is established.

LEMMA 4. For any state (v,X), we have π(v,X) ≤
f∗
T (v, X̄).

PROOF. Since π(v,X) = max{π1(v,X), πt1(v,X), πt2(v,X)}
and π1(v,X), πt1(v,X), and πt2(v,X) are the lower bounds of
f∗
T (v, X̄), thus the lemma holds.

LEMMA 5. For any state (v,X), we have (i) π1(u,X) +
w(v, u) ≥ π1(v,X), and (ii) π1(v,X ∪ X ′) + f∗

T (v,X
′) ≥

π1(v,X), where X ∩X ′ = ∅.

PROOF. By definition, to prove the lemma, we need to prove
that (i) f∗

1 (u, X̄) + w(v, u) ≥ f∗
1 (v, X̄), and (ii) f∗

1 (v, X̄\X ′) +
f∗
T (v,X

′) ≥ f∗
1 (v, X̄). First, we have f∗

1 (u, X̄) + w(v, u) =
max
x∈X̄

{f∗
T (u, {x}) + w(v, u)}. Clearly, f∗

T (u, {x}) + w(v, u) is

the weight of a tree that is rooted at v and covers a label x. Since
f∗
T (v, {x}) is the optimal weight over all such type of trees, we

have f∗
T (u, {x}) + w(v, u) ≥ f∗

T (v, {x}), and thereby we have
max
x∈X̄

{f∗
T (u, {x}) + w(v, u)}≥ max

x∈X̄
{f∗

T (v, {x})} = f∗
1 (v, X̄).

Second, since f∗
T (v,X

′) ≥ f∗
1 (v,X

′), it is sufficient to show
f∗
1 (v, X̄\X ′) + f∗

1 (v,X
′) ≥ f∗

1 (v, X̄). By the definition of the
one-label lower bound, the above inequality clearly holds.

LEMMA 6. For any state (v,X), we have (i) πt1(u,X) +
w(v, u) ≥ πt1(v,X), and (ii) πt1(v,X ∪ X ′) + f∗

T (v,X
′) ≥

πt1(v,X), where X ∩X ′ = ∅.

PROOF. First, we prove that the case (i) holds. Recall that
f∗
R̃
(u, X̄) is the optimal weight of the tour (denoted by (u ∼

R(ṽi, ṽj , X̄) ∼ u)) that starts from u, ends at u, and passes through
all the virtual nodes in VX̄ . Based on this optimal tour, we can con-
struct a new tour v ∼ u ∼ R(ṽi, ṽj , X̄) ∼ u ∼ v. Clearly,
the weight of this new tour is f∗

R̃
(u, X̄) + 2 × w(v, u). Note that

such a new tour is tour that starts from v, ends at v, and passes
through all the virtual nodes in VX̄ . Since f∗

R̃
(v, X̄) is the opti-

mal weight of the tour that starts from v, ends at v, and passes
through all virtual nodes in VX̄ , we have f∗

R̃
(u, X̄) + 2w(v, u) ≥

f∗
R̃
(v, X̄). Since πt1(u,X) = f∗

R̃
(u, X̄)/2 by definition, we have

πt1(u,X) + w(v, u) ≥ πt1(v,X).

104



1

3.16

10

31.6

100

316

1K

3.2K

10K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(a) knum = 5

1

3.16

10

31.6

100

316

1K

3.2K

10K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(b) knum = 6

1

3.16

10

31.6

100

316

1K

3.2K

10K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(c) knum = 7

1

3.16

10

31.6

100

316

1K

3.2K

10K

8 5.66 4 2.83 2 1.41 1

T
im

e 
(S

ec
)

Approximation Ratio

Basic
PrunedDP

PrunedDP+
PrunedDP++

(d) knum = 8
Figure 14: Query Processing Time vs. Approximation Ratio: Vary Number of Labels (knum) on LiveJournal
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Figure 15: Query Processing Time vs. Approximation Ratio: Vary Number of Labels (knum) on RoadUSA
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Figure 16: Testing with Relatively Large knum for PrunedDP++ (kwf = 400)

Second, we show that the case (ii) also holds. Since f∗
T (v,X

′) ≥
f∗
R̃
(v,X ′)/2, it is sufficient to show f∗

R̃
(v, X̄\X ′) + f∗

R̃
(v,X ′)

≥ f∗
R̃
(v, X̄). Let v ∼ R(ṽi, ṽj , X̄\X ′) ∼ v and v ∼

R(ṽi, ṽj , X
′) ∼ v be the optimal tours that starts from v, ends

at v, and passes through all the virtual nodes in VX̄\X′ and VX′
respectively. We can merge these two tours and thus obtain a new
tour that starts from v, ends at v, and passes through all the virtual
nodes in VX̄ . Since f∗

R̃
(v, X̄) is the optimal weight over all such

type of tours, we have f∗
R̃
(v, X̄\X ′) + f∗

R̃
(v,X ′) ≥ f∗

R̃
(v, X̄).

Putting it all together, the lemma is established.

LEMMA 7. Let π(v,X) = max{π1(v,X),πt1(v,X), πt2(v,X)}.
Then, for a state (v,X), we have (i) π(u,X)+w(v, u)≥ π(v,X),
and (ii) π(v,X∪X ′)+f∗

T (v,X
′)≥ π(v,X), where X∩X ′ = ∅.

PROOF. First, since all the developed lower bounds are consis-
tent (for πt2(v,X), we can use the technique proposed in Sec-
tion 4.2 to make it consistent), we can easily prove that the inequal-
ity π(u,X) + w(v, u) ≥ π(v,X) holds.

Second, we prove that π(v,X ∪ X ′) + f∗
T (v,X

′) ≥ π(v,X)
also holds. Below, we consider nine different cases.

Case (1): if π(v,X ∪ X ′) = π1(v,X ∪ X ′) and π(v,X) =
π1(v,X), then the result clearly holds by Lemma 5.

Case (2): if π(v,X ∪ X ′) = π1(v,X ∪ X ′) and π(v,X) =
πt1(v,X), then we have π1(v,X∪X ′)+f∗

T (v,X
′)≥ πt1(v,X∪

X ′) + f∗
T (v,X

′). Since πt1(v,X) is consistent by Lemma 6, we
have πt1(v,X ∪X ′) + f∗

T (v,X
′) ≥ πt1(v,X) = π(v,X).

Case (3): if π(v,X ∪ X ′) = π1(v,X ∪ X ′) and π(v,X) =
πt2(v,X), then we have π1(v,X∪X ′)+f∗

T (v,X
′)≥ πt2(v,X∪

X ′) + f∗
T (v,X

′). Since πt2(v,X) is consistent, we have
πt2(v,X ∪X ′) + f∗

T (v,X
′) ≥ πt2(v,X) = π(v,X).

Similarly, for the other six cases, we can also prove that π(v,X∪
X ′) + f∗

T (v,X
′) ≥ π(v,X) holds. Putting it all together, the

lemma is established.

A.2 Additional experiments
Results on Different Graph Topologies. In this experiment, we
test the performance of the proposed algorithms on graphs with d-
ifferent topologies. To this end, we use two additional publicly
available datasets LiveJournal3 and RoadUSA4 to evaluate our al-
gorithms. LiveJournal is a social network with a power-law degree
distribution. It contains 4, 847, 572 nodes and 42, 851, 237 edges
with a diameter 20. The average degree is 17.7 and the maximum
degree is 20, 333. RoadUSA is the USA road network with a rel-
atively uniform degree distribution. It contains 23, 947, 348 nodes
and 28, 854, 312 edges with a diameter larger than 8, 000. The
average degree is 2.4 and the maximum degree is 9. For each
dataset, we generate labels for nodes randomly with the default
label frequency. We vary knum from 5 to 8 and test the perfor-
mance of the four algorithms Basic, PrunedDP, PrunedDP+, and
PrunedDP++.

The results on the LiveJournal dataset are shown in Fig. 14. As
can be seen, when knum increases, the processing time for all al-
gorithms increases. When knum = 8 (Fig. 14 (d)), to reach an
approximation ratio of 1, PrunedDP++ is two orders of magni-
tude faster than PrunedDP+ and PrunedDP, and three orders of
magnitude faster than Basic. For example, Basic computes the
optimal solution within 8, 871.9 seconds while PrunedDP++ on-
ly requires 8.7 seconds to calculate the optimal solution. As de-
sired, PrunedDP+ is faster than PrunedDP. However, when the
approximation ratio decreases to 1, the gap between PrunedDP+
and PrunedDP decreases. For example, for knum = 7 (Fig. 14
(c)), to achieve an approximation ratio of 2, PrunedDP+ only re-
quires 16.2 seconds while PrunedDP needs 205.2 seconds. How-

3http://konect.uni-koblenz.de/networks/soc-LiveJournal1
4http://www.dis.uniroma1.it/challenge9/download.shtml
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ever, to achieve an approximation ratio of 1, PrunedDP+ requires
169.7 seconds while PrunedDP needs 237.2 seconds.

The results on the RoadUSA dataset are shown in Fig. 15. Sim-
ilar to the results on LiveJournal, PrunedDP++ is also the win-
ner among all the algorithms on RoadUSA. However, different
from the results on LiveJournal, the gap between PrunedDP++
and PrunedDP+ on RoadUSA is much smaller than that on
LiveJournal. For example, when knum = 6, to reach an approxi-
mation of 1, PrunedDP++ is 48.8 times faster than PrunedDP+ in
LiveJournal (Fig. 14 (b)), whereas PrunedDP++ is slightly faster
than PrunedDP+ on RoadUSA (Fig. 15 (b)). This is because
RoadUSA is a near planar graph, in which the difference between
the one-label based lower bound and the tour-based lower bound
is usually small. Instead, LiveJournal is a power-law graph, in
which the one-label based lower bound is typically much small-
er than the tour-based lower bound. These results indicate that the
performance of PrunedDP++ is better on power-law graphs than
that on near planar graphs.

Results on Relatively Large knum Values. In this experimen-
t, we increase knum to 9 and 10 to test the scalability and pro-
gressive performance of the PrunedDP++ algorithm. Note that
in many practical applications such as keyword search and team
search problems, the number of given keywords is typically small-
er than 10 [8, 6, 22, 30]. To the best of our knowledge, we are the
first to handle knum > 6 to compute the exact GST on million-
scale graphs. The experimental results on the DBLP dataset are
shown in Fig. 16 (a) and Fig. 16 (b) for knum = 9 and knum = 10
respectively. As can be seen, when knum increases, the total pro-
cessing time to compute the optimal answer increases. For exam-
ple, PrunedDP++ requires 262.7 seconds and 520.6 seconds to
compute the optimal answers for knum = 9 and knum = 10
respectively. Nevertheless, within 10 seconds, PrunedDP++ al-
ready generates answers with approximation ratios 1.31 and 1.29
for knum = 9 and knum = 10 respectively. The results on the
IMDB dataset are similar to those on the DBLP dataset, which are
shown in Fig. 16 (c) and Fig. 16 (d) for knum = 9 and knum = 10
respectively. As can be seen, when knum increases from 9 to 10,
the processing time for PrunedDP++ increases from 214.7 seconds
to 380.4 seconds. Likewise, within 37 seconds, PrunedDP++ gen-
erates an answer with approximation ratio1.083 for knum = 9, and
within 72 seconds, PrunedDP++ generates an answer with approx-
imation ratio 1.077 for knum = 10. These results indicate that the
PrunedDP++ algorithm works well for relatively large knum val-

knum kwf Total Time Appro Ratio Total Time Tr

BANKS-II BANKS-II PrunedDP++ PrunedDP++
5 400 211.3 secs 1.33 7.0 secs 6.9 secs
6 400 274.8 secs 1.22 18.7 secs 8.3 secs
7 400 332.1 secs 1.40 24.6 secs 18.0 secs
8 400 391.7 secs 1.45 112.4 secs 31.4 secs
6 200 275.4 secs 1.22 10.2 secs 10.1 secs
6 800 282.6 secs 1.14 20.3 secs 11.2 secs
6 1, 600 266.0 secs 1.14 11.1 secs 9.8 secs

Table 3: Comparison with BANKS-II on IMDB

ues, and thus it is very useful for keyword search and team search
related applications.

Additional Exp-5: Comparison with BANKS-II on IMDB. Here
we compare PrunedDP++ and BANKS-II on the IMDB dataset.
Table 3 reports the results on IMDB. Similar to the results on
DBLP (Table 2), PrunedDP++ is 13.5 to 30.2 times faster than
BANKS-II under all parameter settings on the IMDB dataset. For
instance, under the default setting (knum = 6 and kwf = 400),
BANKS-II computes an 1.22-approximate answer in 274.8 sec-
onds while PrunedDP++ generates the optimal answer using on-
ly 18.7 seconds. When knum = 8, although PrunedDP++ takes
112.4 seconds to calculate the optimal answer, it only consumes
31.4 seconds to compute the answer with at least the same qual-
ity as the answer calculated by BANKS-II. These results further
confirm the efficiency of the PrunedDP++ algorithm.

Additional Exp-6: Case Study. Here we report the case study on
the IMDB dataset. In this case study, we use a seven keywords
query P = { “Germany”, “Campus”, “winner”, “independent”,
“fights”, “ugly”, “community” }. With this query, the users may
want to find some correlated actors/actresses who act movies with
topics related to the keywords given in P . The answer reported
by PrunedDP++ (taking 40.9 seconds) is shown in Fig. 17. This
answer contains two actors who collaborate a movie and act movies
with topics related to all the 7 keywords in P . Totally two actors
and eight movies are included in this answer. The answer reported
by BANKS-II (taking 252.7 seconds) is shown in Fig. 18. This
answer contains an actor who acts seven movies directly/indirectly
related to the seven keywords in P . Totally an actor, an actress,
two directors, and ten movies are involved in this answer. Clearly,
the answer reported by PrunedDP++ is more compact and may
better meet the users’ requirements than the answer reported by
BANKS-II. These results further confirm the effectiveness of the
proposed approach.
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